Wednesday 14 March 2018

Sistema de troca de amostras em python


Jon V.
BigData. Iniciantes. Negociação.
BigData. Iniciantes. Negociação.
Colocando seu primeiro comércio Forex com o Python.
Atualização: atualizei o código para que ele funcione com a nova API da Oanda. Venha aqui.
Tempo para conversar sobre corretores, como colocar um comércio com programação e, o mais importante, como não ser enganado.
Um corretor não é mais do que uma empresa que lhe permite comercializar (comprar ou vender) ativos em um mercado através da plataforma. O que é muito importante para algotrading é:
O corretor oferece uma API para que possamos fazer pedidos. Você pode ter uma conta de demonstração para executar seu ambiente de teste e experimentar. O spread é tão pequeno quanto possível.
No nosso caso, nós realmente não nos importamos com a propagação, pois não estaremos fazendo a venda de alta freqüência em breve.
Embora os corretores estejam regulamentados, ocorreram incidentes nos últimos dois anos, os corretores dobraram devido a certas condições. Seja muito cauteloso se.
Não há comentários sobre o corretor na internet (ou a maioria deles é ruim) Se o corretor lhe oferecer uma alavanca louca (como 1: 200) Se o corretor parece estar em um país muito estranho.
O que poderia acontecer é que você comece a ganhar algum dinheiro e você não pode removê-los. A sério. Situação super estressante.
Mas vamos mudar para uma nota mais feliz que está abrindo uma conta e colocando nosso primeiro comércio programático. Whooha!
Estou usando o Oanda como corretor (não estou afiliado a eles) e eles oferecem uma API bastante decente, bibliotecas no github e uma conta demo gratuita.
Depois de iniciar sessão na sua conta de demonstração, vá para Gerenciar acesso à API. Lá, você pode encontrar sua chave de API que vamos usar em nosso sistema para fazer negócios. CERTIFIQUE-SE DE NÃO COMPARTILHAR ESTA CHAVE.
O código para isso é e todas as outras postagens estão no github e você pode instalá-lo e executá-lo facilmente.
Atualização: Oanda lançou um novo mecanismo de execução (kickass) chamado v20 e eles lançaram uma nova API (melhorada). Esta publicação foi atualizada para usar a nova API, mas se (por qualquer motivo) você quiser verificar o código antigo, está aqui. Você é sortudo!
Conectando-se a Oanda precisa de um arquivo conf - o qual você pode gerar usando um script que o Oanda fornece aqui ou você pode simplesmente criá-lo você mesmo. Porque você iria querer aquilo? Em primeiro lugar, quando se trata de credenciais (e meu dinheiro), eu prefiro saber tudo o que está acontecendo. E eu não gosto de ter que instalar o PyYAML apenas para ler um arquivo conf. Sinta-se livre para usar qualquer um dos métodos.
Agora, prepare-se para se surpreender. O código é direto. Inicializamos a API:
e agora vamos fazer um pedido (comprar 5000 unidades de EURUSD)
Verifique se o preço atual é tão fácil!
Super fácil. Não se preocupe com o que é EURUSD ou com quantas unidades estamos comprando ou qual é a ordem do mercado. Por enquanto, colocamos nossa primeira troca de nosso laptop e vamos construir nossa própria API para fazer negócios. Coisas emocionantes!
Você pode ler a documentação da Oanda aqui para ver o que mais você pode fazer com sua API e encontrar a biblioteca do Python aqui. Tons de exemplos estão disponíveis na página do Github da Oanda aqui.
Próxima, conectando-se a um verdadeiro sistema algotrading AO VIVO, correndo do meu RaspberryPI em casa.
Você poderá ver o programa (quase) final em execução e falaremos mais sobre Forex e estratégias.
Se você tiver mais comentários, clique-me no jonromero ou inscreva-se no boletim informativo.
Legal outro. Este é um tutorial de engenharia sobre como construir uma plataforma algotrading para experimentação e FUN. Qualquer sugestão aqui não é um conselho financeiro. Se você perder qualquer (ou todos) o seu dinheiro porque seguiu quaisquer conselhos de negociação ou implantou este sistema na produção, não pode culpar este blog aleatório (e / ou eu). Aproveite a seu próprio risco.

Python Algorithmic Trading Library.
PyAlgoTrade é uma Biblioteca de Negociação Algorítmica Python com foco em backtesting e suporte para negociação de papel e negociação ao vivo. Digamos que você tenha uma idéia de uma estratégia de negociação e que você gostaria de avaliá-la com dados históricos e ver como ela se comporta. PyAlgoTrade permite que você faça isso com um esforço mínimo.
Principais características.
Totalmente documentado. Evento conduzido. Suporta pedidos Market, Limit, Stop e StopLimit. Suporta Yahoo! Finanças, Google Finance e NinjaTrader CSV. Suporta qualquer tipo de dados da série temporal no formato CSV, por exemplo, Quandl. Suporte comercial Bitcoin através do Bitstamp. Indicadores técnicos e filtros como SMA, WMA, EMA, RSI, Bandas Bollinger, Expositores Hurst e outros. Métricas de desempenho como a taxa de Sharpe e análise de redução. Manipulação de eventos do Twitter em tempo real. Perfil de eventos. Integração TA-Lib.
Muito fácil de dimensionar horizontalmente, ou seja, usando um ou mais computadores para testar uma estratégia.
PyAlgoTrade é gratuito, de código aberto e está licenciado sob a Licença Apache, Versão 2.0.

Por que Python?
Antes de começar, gostaria de falar sobre o porquê eu uso o Python para a computação financeira. Levei vários anos para entender todas as opções lá fora e vou tentar convencê-lo de que o Python é realmente a melhor ferramenta para a maioria das tarefas envolvidas na negociação.
Quando eu comecei a programar como uma criança em algum lugar no início dos anos noventa, escolher uma linguagem de programação era fácil, pois simplesmente não havia muitos para escolher. Comecei pela primeira vez no Pascal e desde então programado em Delphi, C, C ++, C #, Java, VB, PHP, Matlab, Python, SPIN e até mesmo o ASM. Eu não aprendi todas essas línguas por diversão, como eu tenho coisas melhores para fazer (como o trabalho real), mas eu precisava, pois não tinha nenhuma linguagem de "faca do exército suíço" para todas as minhas necessidades. Eu precisava de C e Delphi para fazer aplicativos autônomos, PHP para construir um site e Matlab para cálculos científicos. Como diz o ditado, "jack of all trades é mestre de nenhum", então, mudando de um idioma para outro, nunca adquiri conhecimento especializado em nenhum deles.
Idealmente, eu gostaria de aprender apenas um idioma que seja adequado para todos os tipos de trabalho: crunching de números, criação de aplicativos, desenvolvimento web, interface com API etc. Este idioma seria fácil de aprender, o código seria compacto e claro. correr em qualquer plataforma. Isso me permitiria trabalhar de forma interativa, permitindo que o código evoluísse ao escrevê-lo e ser pelo menos livre, como na fala. E o mais importante, eu me importo muito com o meu próprio tempo do que com o tempo de CPU do meu pc, então o desempenho do número de bits é menos importante para mim do que a minha própria produtividade.
Atualmente, as duas línguas mais populares para computação técnica e científica são Matlab e Python. Ambos cumprem muitos dos desejos descritos acima, mas eles têm algumas diferenças importantes. Matlab é mais popular quando se trata de computação técnica. Isto é o que costumava usar o dia-a-dia para resolver problemas de engenharia. Para simulações numéricas e trabalhar com dados "limpos", é provavelmente a melhor ferramenta que existe. Bom IDE, fantásticas funções de traçabilidade, excelente documentação. É menos adequado para o desenvolvimento de aplicativos ou como linguagem de uso geral. Espere pagar \
2k \ $ para uma licença comercial básica mais extra para caixas de ferramentas específicas.
Fazer pesquisas financeiras em Matlab provou ser um grande desafio para mim, principalmente porque não existe uma maneira fácil de lidar com dados "sujos" (dados que não estão bem alinhados em uma tabela, mas tem múltiplas fontes com datas diferentes e entradas faltantes) . Outro desafio que enfrentei foi impedir que meu código se tornasse uma bagunça. É possível escrever bibliotecas seguras com o Matlab, mas está longe de ser trivial e o design do idioma realmente incentiva a codificação desordenada. Ao usar o Matlab para o desenvolvimento da estratégia de negociação, consegui lidar com as deficiências desta plataforma. No entanto, quando eu decidi construir um sistema de troca automática, eu tinha atingido um beco sem saída. Enquanto consegui me conectar à Interacive Brokers API, descobriu-se que não havia como criar uma aplicação confiável. Embora seja bom para pesquisa, a Matlab é uma merda para implantação. Foi quando eu decidi olhar para outras opções. Python é muito semelhante ao Matlab e resolve a maioria de suas falhas. E é grátis! Com o trabalho interativo do notebook Ipython no Python, é fácil, como no Matlab, mas o que você obtém é uma linguagem de programação que pode completar quase todas as tarefas, desde a mineração de dados até aplicativos de desenvolvimento web e qualidade de produção com grandes GUIs. Se eu tivesse que começar tudo de novo, eu escolheria Python, pois isso me salvaria o problema de aprender outro idioma para Gui e desenvolvimento web. Depois de usar Python por três anos, ainda estou entusiasmado com o momento em que caí apaixonado por isso. Sinto que muitos outros comerciantes podem se beneficiar grandemente aprendendo o Python desde o início e por isso criei um curso de troca com Python.
Instalação.
O Python, como a maioria dos softwares de código aberto, possui uma característica específica: pode ser um desafio para um iniciante encontrar seu caminho em torno de milhares de bibliotecas e ferramentas. Este guia irá ajudá-lo a obter tudo o que precisa em sua caixa de ferramentas quant, espero que sem problemas.
Felizmente, há várias distribuições, contendo a maioria dos pacotes necessários, tornando a instalação brisa.
A melhor distribuição na minha opinião é a Anaconda do Continuum Analytics.
A distribuição da Anaconda inclui:
Python 3 Python interprete em cima do qual tudo o resto é executado Ipython: Interactive shell & amp; notebook Spyder IDE numpy & amp; scipy: ferramentas de computação científica, semelhantes a Matlab pandas2: biblioteca de estruturas de dados. muitos mais pacotes científicos e de utilidade, veja lista de pacotes.
Então, por favor, vá em frente e instale a Anaconda.
Ferramentas e bibliotecas extras.
Ao lado dos brindes incluídos no instalador da Anaconda, você precisará pelo menos de um editor de texto de descida e de um navegador.
notepad ++ é um editor de texto versátil e leve O Google Chrome ou o navegador Firefox são necessários para o notebook Jupyter (o Internet Explorer não funcionará)
Outras bibliotecas úteis incluem ferramentas para leitura xml, documentação, etc., serão abordadas mais tarde.
Código de execução.
A maior parte do código deste curso é executado em um documento interativo chamado "caderno".
Nota: O ambiente de programação interativo que usamos é chamado de notebook Jupyter. Anteriormente, foi chamado de "notebook IPython", mas foi renomeado para "Jupyter". Isso foi feito para mostrar que vários idiomas são suportados (JUlia, PYThon, R e mais). Este curso foi escrito antes dessa transição de nomeação, por isso ocasionalmente, você encontrará referências ao notebook Ipython, que é o mesmo que o notebook Jypyter.
Lançamento do notebook Jupyter.
Neste momento (maio de 2018), não é possível alterar o diretório de trabalho depois de iniciar o notebook. Você precisa iniciá-lo no diretório que contém seus cadernos para acessar seus cadernos.
No entanto, existem várias opções para abrir rapidamente seus cadernos:
Iniciando o notebook Jupyter com um atalho.
Se você estiver usando um diretório estático para armazenar os cadernos, a maneira mais fácil de abri-los seria em um diretório personalizado usando um atalho modificado: 1. Encontre o atalho no caderno no menu Iniciar clicando em 'Iniciar' e digitando 'Jupiter 'na janela de pesquisa.
Uma vez que o atalho é encontrado, copie-o para a área de transferência pressionando o botão direito do mouse e selecionando 'copiar'. Em seguida, cole-o em sua área de trabalho. Agora você pode editar o diretório de trabalho clicando no botão direito no atalho da área de trabalho e escolhendo 'propriedades'. Mude o campo 'Iniciar em' para o diretório onde seus notebooks estão localizados.
Você pode criar vários atalhos um para cada diretório separado de notebooks. & lt;! - Um curto screencast irá mostrar-lhe como fazer isso.
Um tutorial mais extenso sobre o uso do notebook pode ser encontrado aqui.
Bibliotecas científicas.
NumPy é um pacote fundamental projetado para cálculos científicos. Em sua funcionalidade, é muito semelhante ao Matlab, fornecendo métodos de trabalho com matrizes multidimensionais e arrays. O site Numpy fornece toda a documentação que você precisa junto com um tutorial, mas ler o Capítulo 4 do livro Python for Data Analysis é ainda melhor para obter uma visão geral sobre o que essa ferramenta pode fazer. Você não deve se preocupar muito com a compreensão de todos os sinos e assobios do NumPy, por enquanto é suficiente entender os conceitos gerais de trabalhar com ndarray e indexação.
Matplotlib.
Para ter uma idéia das quase infinitas capacidades desta biblioteca, basta dar uma olhada na galeria matplotlib! Nós normalmente só precisaremos das funções plot () e hist (). Outro ótimo tutorial de funções de traçado é dado neste caderno.
Código de escrita, execução e depuração.
Até agora, nos concentramos em escrever código dentro do notebook IPython. Esta é uma boa maneira para a prototipagem rápida, mas quando você precisa reutilizar a mesma funcionalidade em diferentes cadernos, o código de cópia é um hábito muito ruim. Um bom hábito seria usar módulos para reutilizar a funcionalidade. Um módulo é essencialmente um arquivo. py ou um diretório com arquivos. py contendo funções e classes. Essas funções / classes podem ser acessadas pela diretiva de importação. Uma boa explicação dos módulos pode ser encontrada nos documentos do Python. Nós estaremos olhando para escrever nossos próprios módulos na Parte 2, por enquanto é suficiente saber como reutilizar a funcionalidade dos módulos existentes. Um fluxo típico de desenvolvimento de código consiste em duas etapas:
Etapa de prototipagem: é aqui que você toma a abordagem rápida e não suja. Desenvolva de forma interativa usando IPython, IPython ou Spyder. Aqui você pode reutilizar funções de bibliotecas existentes e criar novas funcionalidades. O notebook é ideal para trabalho interativo, mas menos adequado para depuração avançada, o Spyder é excelente para depuração e o Ipython está em algum lugar intermediário. Minha própria experiência é que um depurador avançado raramente é necessário, normalmente eu posso resolver 70% dos erros, apenas olhando a mensagem de erro, outros 25% adicionando uma declaração de impressão. Há também uma maneira de iniciar um depurador do notebook. Basta digitar% qtconsole no notebook e um novo console será aberto conectado ao mesmo ipython nos bastidores. O console tem acesso a todas as variáveis ​​e também pode executar% debug, que iniciará uma sessão de depuração.
Etapa Módulo: uma vez que você esteja feliz com a funcionalidade desenvolvida em uma fase de prototipagem, você pode integrá-la em um módulo. Nesta fase, é uma boa prática adicionar alguma documentação ao código que você escreveu. A documentação do código em Python é muito fácil com docstrings. Docstrings são cadeias de texto incluídas no código que são usadas para documentar a funcionalidade. Para alguns exemplos, dê uma olhada aqui. Para uma produtividade ideal na fase do módulo, você precisa de um bom editor de código fonte. Há muitas opções lá fora. Meus favoritos (gratuitos) são (em ordem crescente de complexidade e recursos):
Notepad ++ notepad, mas muito melhor (destaque de sintaxe etc). Ideal para mudanças rápidas de código, quando você não deseja ativar um editor mais extenso. Spyder: editor leve que fecha a lacuna entre o IPython e um IDE completo (Integrated Development Environment). Especificamente visado no trabalho científico interativo. Pyscripter - IDE fácil de usar com um depurador bem integrado. Somente Windows. Pydev - IDE de qualidade profissional.
Pode demorar algum tempo para encontrar uma maneira de desenvolver um código que melhor lhe convier. Para mim, o fluxo de trabalho ideal é: Protótipo com notebook - & gt; adicionar a um módulo com PyDev ou PyScripter - & gt; use um módulo em um novo notebook. \ Mais material de leitura: capítulo 3 do livro PDA. Ok, teoria suficiente, vamos trabalhar com os módulos. Se você ainda não baixou as pastas de trabalho para esta parte, pegue-as da seção de cadernos de exemplo e veja o caderno twp_03_Working_with_modules.
Exemplo de cadernos.
Agora é a hora de usar os conceitos que você aprendeu nesta parte. Vamos pular diretamente em trabalhar com matrizes numpy e planear funções. No que diz respeito ao planejamento de você, agora só precisa de duas funções plot () e * hist () * juntamente com alguns comandos para definir os títulos e eixos de etiquetas. Existem três exemplos de cadernos para esta parte do curso:
twp_01_IPython_Notebook - mostra o caminho ao redor do notebook IPython (view online) twp_02_Leveraged_etfs - simule alavancados etfs para provar que não existe tal como aproveitamento etf decaimento (visualização online) twp_03_Working_with_modules. ipynb aprenda a trabalhar com módulos (veja online)
Obter os notebooks Apenas pegue o arquivo zip e extraie-o para sua pasta de cadernos e, em seguida, comece o notebook Jupyter para vê-los aparecer no painel de bordo.

Sistema de troca de exemplo em python
Se você é um comerciante ou um investidor e gostaria de adquirir um conjunto de habilidades de negociação quantitativas, você está no lugar certo.
O curso Trading With Python irá fornecer-lhe as melhores ferramentas e práticas para pesquisa de negociação quantitativa, incluindo funções e scripts escritos por comerciantes quantitativos especializados. O curso dá o máximo impacto para o seu tempo investido e dinheiro. Ele se concentra na aplicação prática da programação ao comércio e não à informática teórica. O curso irá pagar por si mesmo rapidamente, economizando tempo no processamento manual de dados. Você passará mais tempo pesquisando sua estratégia e implementando negócios lucrativos.
Visão geral do curso.
Parte 1: princípios Você vai aprender por que a Python é uma ferramenta ideal para negociação quantitativa. Começaremos pela criação de um ambiente de desenvolvimento e, em seguida, apresentaremos as bibliotecas científicas.
Parte 2: Manipulação dos dados Saiba como obter dados de várias fontes gratuitas, como Yahoo Finance, CBOE e outros sites. Leia e escreva vários formatos de dados, incluindo arquivos CSV e Excel.
Parte 3: estratégias de pesquisa Aprenda a calcular o P & L e as métricas de desempenho acompanhantes, como Sharpe e Drawdown. Desenvolva uma estratégia de negociação e otimize seu desempenho. Múltiplos exemplos de estratégias são discutidos nesta parte.
Parte 4: Indo ao vivo! Esta parte é centrada em torno da Interactive Brokers API. Você aprenderá como obter dados em estoque em tempo real e colocar ordens ao vivo.
Muitos códigos de exemplo.
O material do curso consiste em "cadernos" que contêm texto junto com um código interativo como este. Você poderá aprender interagindo com o código e modificando-o para seu próprio gosto. Será um excelente ponto de partida para escrever suas próprias estratégias.
Embora alguns tópicos sejam explicados em grande detalhe para ajudá-lo a entender os conceitos subjacentes, na maioria dos casos você nem precisa escrever seu próprio código de baixo nível, devido ao suporte de bibliotecas de código aberto existentes:
A biblioteca TradingWithPython combina uma grande parte da funcionalidade discutida neste curso como uma função pronta para usar e será usada ao longo do curso. Pandas irá fornecer-lhe todo o poder de levantamento pesado necessário no trituração de dados.
Todo o código é fornecido sob a licença BSD, permitindo seu uso em aplicações comerciais.
Classificação do curso.
Um piloto do curso foi realizado na primavera de 2018, é o que os alunos conseguiram dizer:
Matej curso bem projetado e bom treinador. Definitivamente valeu o preço e meu tempo, Lave Jev, obviamente, conhecia suas coisas. A profundidade de cobertura foi perfeita. Se Jev executar algo assim novamente, serei o primeiro a se inscrever. John Phillips Seu curso realmente me fez começar a pensar em python para a análise do sistema de estoque.

QuantStart.
Junte-se ao portal de membros privados da Quantcademy que atende à comunidade de comerciantes de varejo de varejo em rápido crescimento. Você encontrará um grupo bem informado de mentalistas quant pronto para responder suas perguntas comerciais mais importantes.
Confira meu ebook sobre o comércio de quant, onde eu ensino você como criar estratégias de negociação sistemáticas lucrativas com ferramentas Python, desde o início.
Dê uma olhada no meu novo ebook sobre estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas bayesianas, com Python e R.
Por Michael Halls-Moore em 26 de julho de 2018.
Uma das perguntas mais freqüentes que recebo no QS mailbag é "Qual é a melhor linguagem de programação para negociação algorítmica?". A resposta curta é que não existe um "melhor" idioma. Parâmetros de estratégia, desempenho, modularidade, desenvolvimento, resiliência e custo devem ser considerados. Este artigo descreve os componentes necessários de uma arquitetura de sistema de negociação algorítmica e como as decisões relativas à implementação afetam a escolha do idioma.
Em primeiro lugar, serão considerados os principais componentes de um sistema de negociação algorítmico, como ferramentas de pesquisa, otimizador de portfólio, gerenciador de riscos e motor de execução. Posteriormente, serão examinadas diferentes estratégias de negociação e como elas afetam o design do sistema. Em particular, a freqüência de negociação e o provável volume de negociação serão discutidos.
Uma vez que a estratégia de negociação foi selecionada, é necessário arquitetar todo o sistema. Isso inclui a escolha de hardware, o (s) sistema (s) operacional (is) e a resiliência do sistema contra eventos raros e potencialmente catastróficos. Enquanto a arquitetura está sendo considerada, deve-se ter em conta o desempenho, tanto para as ferramentas de pesquisa quanto para o ambiente de execução ao vivo.
Qual é o sistema de comércio tentando fazer?
Antes de decidir sobre o "melhor" idioma com o qual escrever um sistema de negociação automatizado, é necessário definir os requisitos. O sistema será puramente baseado em execução? O sistema exigirá um módulo de gerenciamento de risco ou construção de portfólio? O sistema exigirá um backtester de alto desempenho? Para a maioria das estratégias, o sistema comercial pode ser dividido em duas categorias: Pesquisa e geração de sinal.
A pesquisa está preocupada com a avaliação de um desempenho de estratégia em relação aos dados históricos. O processo de avaliação de uma estratégia de negociação em relação aos dados anteriores do mercado é conhecido como backtesting. O tamanho dos dados e a complexidade algorítmica terão um grande impacto na intensidade computacional do backtester. A velocidade da CPU e a concorrência são muitas vezes os fatores limitantes na otimização da velocidade de execução da pesquisa.
A geração de sinal está preocupada com a geração de um conjunto de sinais de negociação a partir de um algoritmo e envio de ordens para o mercado, geralmente através de uma corretora. Para determinadas estratégias, é necessário um alto nível de desempenho. As questões de E / S, como a largura de banda da rede e a latência, muitas vezes são fatores limitantes na otimização de sistemas de execução. Assim, a escolha de idiomas para cada componente de todo o seu sistema pode ser bastante diferente.
Tipo, Frequência e Volume de Estratégia.
O tipo de estratégia algorítmica empregada terá um impacto substancial no design do sistema. Será necessário considerar os mercados comercializados, a conectividade com os fornecedores de dados externos, a freqüência e o volume da estratégia, o trade-off entre facilidade de desenvolvimento e otimização de desempenho, bem como qualquer hardware personalizado, incluindo customizado servidores, GPUs ou FPGAs que possam ser necessários.
As opções de tecnologia para uma estratégia de ações de baixa freqüência dos EUA serão muito diferentes das de uma negociação de estratégias de arbitragem estatística de alta freqüência no mercado de futuros. Antes da escolha do idioma, muitos fornecedores de dados devem ser avaliados que pertencem à estratégia em questão.
Será necessário considerar a conectividade com o fornecedor, a estrutura de todas as APIs, a pontualidade dos dados, os requisitos de armazenamento e a resiliência em face de um fornecedor que está offline. Também é aconselhável possuir acesso rápido a vários fornecedores! Vários instrumentos têm todos os seus peculiaridades de armazenamento, exemplos dos quais incluem símbolos de ticker múltiplos para ações e datas de vencimento para futuros (sem mencionar nenhum dado OTC específico). Isso precisa ser incorporado ao design da plataforma.
A frequência da estratégia provavelmente será um dos maiores drivers de como a pilha de tecnologia será definida. Estratégias que empregam dados com mais freqüência do que minuciosamente ou em segundo lugar, exigem uma consideração significativa em relação ao desempenho.
Uma estratégia que excede as barras segundo (isto é, dados de marca) leva a um design orientado a desempenho como o principal requisito. Para estratégias de alta freqüência, uma quantidade substancial de dados do mercado precisará ser armazenada e avaliada. Software como HDF5 ou kdb + é comumente usado para essas funções.
Para processar os extensos volumes de dados necessários para aplicações HFT, um sistema de backtester e execução extensivamente otimizado deve ser usado. C / C ++ (possivelmente com algum montador) é provável para o candidato a linguagem mais forte. As estratégias de ultra-alta freqüência certamente exigirão hardware personalizado, como FPGAs, co-localização de troca e ajuste de interface de rede / kernal.
Sistemas de pesquisa.
Os sistemas de pesquisa geralmente envolvem uma mistura de desenvolvimento interativo e script automatizado. O primeiro geralmente ocorre dentro de um IDE, como Visual Studio, MatLab ou R Studio. O último envolve cálculos numéricos extensos em vários parâmetros e pontos de dados. Isso leva a uma escolha de idioma que fornece um ambiente direto para testar código, mas também fornece desempenho suficiente para avaliar estratégias em várias dimensões de parâmetros.
Os IDE típicos neste espaço incluem Microsoft Visual C ++ / C #, que contém extensos utilitários de depuração, recursos de conclusão de código (via "Intellisense") e visões gerais diretas de toda a pilha do projeto (via o banco de dados ORM, LINQ); MatLab, que é projetado para uma grande variedade de álgebras lineares numéricas e operações vetoriais, mas de uma forma de console interativo; R Studio, que envolve o console de linguagem estatística R em um IDE de pleno direito; Eclipse IDE para Linux Java e C ++; e IDE semi-proprietários, como Enthought Canopy para Python, que incluem bibliotecas de análise de dados, como NumPy, SciPy, scikit-learn e pandas em um único ambiente interativo (console).
Para backtesting numérico, todos os idiomas acima são adequados, embora não seja necessário utilizar uma GUI / IDE, pois o código será executado "em segundo plano". A principal consideração nesta fase é a velocidade de execução. Um idioma compilado (como C ++) geralmente é útil se as dimensões do parâmetro backtest forem grandes. Lembre-se de que é necessário desconfiar de tais sistemas se for esse o caso!
Idiomas interpretados, como Python, muitas vezes fazem uso de bibliotecas de alto desempenho, como NumPy / pandas para a etapa de teste, para manter um grau razoável de competitividade com equivalentes compilados. Em última análise, o idioma escolhido para o backtesting será determinado por necessidades algorítmicas específicas, bem como o intervalo de bibliotecas disponíveis no idioma (mais sobre isso abaixo). No entanto, o idioma utilizado para o backtester e os ambientes de pesquisa podem ser completamente independentes dos usados ​​na construção de portfólio, gerenciamento de riscos e componentes de execução, como será visto.
Construção de carteiras e gerenciamento de riscos.
A construção do portfólio e os componentes de gerenciamento de riscos são muitas vezes ignorados pelos comerciantes algorítmicos de varejo. Isso é quase sempre um erro. Essas ferramentas fornecem o mecanismo pelo qual o capital será preservado. Eles não só tentam aliviar o número de apostas "arriscadas", mas também minimizam o churn dos próprios negócios, reduzindo os custos de transação.
Versões sofisticadas desses componentes podem ter um efeito significativo na qualidade e consistência da lucratividade. É direto criar um estável de estratégias, pois o mecanismo de construção do portfólio e o gerenciador de riscos podem ser facilmente modificados para lidar com múltiplos sistemas. Assim, eles devem ser considerados componentes essenciais no início do projeto de um sistema de comércio algorítmico.
O trabalho do sistema de construção de carteiras é levar um conjunto de trades desejados e produzir o conjunto de negócios reais que minimizam o churn, manter exposições a vários fatores (como setores, classes de ativos, volatilidade, etc.) e otimizar a alocação de capital para vários estratégias em um portfólio.
A construção do portfólio geralmente se reduz a um problema de álgebra linear (como uma fatoração da matriz) e, portanto, o desempenho é altamente dependente da eficácia da implementação de álgebra linear numérica disponível. As bibliotecas comuns incluem uBLAS, LAPACK e NAG para C ++. O MatLab também possui operações de matriz amplamente otimizadas. Python utiliza NumPy / SciPy para tais cálculos. Um portfólio freqüentemente reequilibrado exigirá uma biblioteca de matriz compilada (e bem otimizada!) Para levar a cabo esta etapa, de modo a não engarrafar o sistema de negociação.
O gerenciamento de riscos é outra parte extremamente importante de um sistema de comércio algorítmico. O risco pode vir de várias formas: aumento da volatilidade (embora isso possa ser visto como desejável para certas estratégias!), Aumento de correlações entre classes de ativos, contraparte padrão, interrupções do servidor, eventos de "cisnes negros" e erros não detectados no código comercial, para nomear alguns.
Os componentes de gerenciamento de risco tentam antecipar os efeitos da volatilidade excessiva e a correlação entre as classes de ativos e seus efeitos (s) subsequentes sobre o capital de negociação. Muitas vezes isso se reduz a um conjunto de cálculos estatísticos, como Monte Carlo "testes de estresse". Isso é muito semelhante às necessidades computacionais de um mecanismo de preços de derivativos e, como tal, será vinculado à CPU. Essas simulações são altamente paralelizáveis ​​(veja abaixo) e, até certo ponto, é possível "lançar hardware no problema".
Sistemas de Execução.
O trabalho do sistema de execução é receber sinais de negociação filtrados dos componentes de construção de portfólio e gerenciamento de riscos e enviá-los para uma corretora ou outros meios de acesso ao mercado. Para a maioria das estratégias de negociação algorítmica de varejo, isso envolve uma conexão API ou FIX para uma corretora, como Interactive Brokers. As considerações primárias ao decidir sobre um idioma incluem a qualidade da API, a disponibilidade do idioma para uma API, a freqüência de execução e o deslizamento antecipado.
A "qualidade" da API refere-se ao quão bem documentado é, qual o tipo de desempenho que ele fornece, se ele precisa de um software autônomo para ser acessado ou se um gateway pode ser estabelecido de forma sem cabeça (ou seja, sem GUI). No caso dos Interactive Brokers, a ferramenta Trader WorkStation precisa ser executada em um ambiente GUI para acessar sua API. Uma vez, tive que instalar uma edição do Desktop Ubuntu em um servidor de nuvem da Amazon para acessar os corretores interativos de forma remota, apenas por esse motivo!
A maioria das APIs fornecerá uma interface C ++ e / ou Java. Geralmente, é de responsabilidade da comunidade desenvolver wrappers específicos do idioma para C #, Python, R, Excel e MatLab. Note-se que, com cada plugin adicional utilizado (especialmente os wrappers da API), há possibilidades de insetos no sistema. Sempre teste plugins desse tipo e assegure-se de que sejam ativamente mantidos. Um indicador valioso é ver quantas novas atualizações de uma base de código foram feitas nos últimos meses.
A frequência de execução é de extrema importância no algoritmo de execução. Note que centenas de pedidos podem ser enviados a cada minuto e, como tal, o desempenho é crítico. Slippage será incorrido através de um sistema de execução mal executado e isso terá um impacto dramático sobre a rentabilidade.
Os idiomas estaticamente digitados (veja abaixo), como C ++ / Java, geralmente são ótimos para execução, mas há um trade-off em tempo de desenvolvimento, testes e facilidade de manutenção. Idiomas dinamicamente digitados, como Python e Perl, geralmente são geralmente "rápidos o suficiente". Certifique-se sempre de que os componentes foram projetados de forma modular (veja abaixo) para que eles possam ser "trocados" à medida que o sistema se reduz.
Processo de Planejamento e Desenvolvimento Arquitetônico.
Os componentes de um sistema de comércio, seus requisitos de freqüência e volume foram discutidos acima, mas a infraestrutura do sistema ainda não foi coberta. Aqueles que atuam como comerciante de varejo ou que trabalham em um fundo pequeno provavelmente estarão "vestindo muitos chapéus". Será necessário cobrir o modelo alfa, o gerenciamento de riscos e os parâmetros de execução, bem como a implementação final do sistema. Antes de aprofundar linguagens específicas, o design de uma arquitetura de sistema ideal será discutido.
Separação de preocupações.
Uma das decisões mais importantes que devem ser tomadas no início é como "separar as preocupações" de um sistema comercial. No desenvolvimento de software, isso significa essencialmente como dividir os diferentes aspectos do sistema de negociação em componentes modulares separados.
Ao expor as interfaces em cada um dos componentes, é fácil trocar partes do sistema por outras versões que ajudem o desempenho, confiabilidade ou manutenção, sem modificar nenhum código de dependência externo. Esta é a "melhor prática" para esses sistemas. Para estratégias em frequências mais baixas, tais práticas são aconselhadas. Para a negociação de alta freqüência, o livro de regras pode ser ignorado à custa de ajustar o sistema para ainda mais desempenho. Um sistema mais acoplado pode ser desejável.
Criar um mapa de componentes de um sistema de negociação algorítmico vale um artigo em si. No entanto, uma abordagem ótima é garantir que haja componentes separados para as entradas de dados de mercado históricos e em tempo real, armazenamento de dados, API de acesso a dados, backtester, parâmetros de estratégia, construção de portfólio, gerenciamento de riscos e sistemas de execução automatizada.
Por exemplo, se o armazenamento de dados em uso estiver atualmente com desempenho inferior, mesmo em níveis significativos de otimização, ele pode ser trocado com reescrituras mínimas para a ingesta de dados ou API de acesso a dados. Até o ponto em que o backtester e os componentes subsequentes estão em causa, não há diferença.
Outro benefício de componentes separados é que permite que uma variedade de linguagens de programação sejam usadas no sistema geral. Não é necessário restringir a um único idioma se o método de comunicação dos componentes for independente de linguagem. Este será o caso se estiverem se comunicando via TCP / IP, ZeroMQ ou algum outro protocolo independente de linguagem.
Como um exemplo concreto, considere o caso de um sistema de backtesting que está sendo escrito em C ++ para o desempenho do "crunching", enquanto o gerenciador de portfólio e os sistemas de execução são escritos em Python usando SciPy e IBPy.
Considerações sobre o desempenho.
O desempenho é uma consideração significativa para a maioria das estratégias comerciais. Para estratégias de maior freqüência, é o fator mais importante. O "Desempenho" cobre uma ampla gama de problemas, como velocidade de execução algorítmica, latência de rede, largura de banda, E / S de dados, simultaneidade / paralelismo e dimensionamento. Cada uma dessas áreas é coberta individualmente por grandes livros didáticos, portanto este artigo apenas arranhará a superfície de cada tópico. A escolha da arquitetura e da linguagem agora será discutida em termos de seus efeitos sobre o desempenho.
A sabedoria prevalecente, como afirmou Donald Knuth, um dos pais da Ciência da Computação, é que "a otimização prematura é a raiz de todo o mal". Este é quase sempre o caso - exceto quando se forma um algoritmo de negociação de alta freqüência! Para aqueles que estão interessados ​​em estratégias de baixa freqüência, uma abordagem comum é construir um sistema da maneira mais simples possível e apenas otimizar à medida que os estrangulamentos começam a aparecer.
Ferramentas de perfil são usadas para determinar onde surgem os estrangulamentos. Perfis podem ser feitos para todos os fatores listados acima, em um ambiente MS Windows ou Linux. Existem muitas ferramentas de sistema operacional e de idioma disponíveis para isso, bem como utilitários de terceiros. A escolha da linguagem agora será discutida no contexto da performance.
C ++, Java, Python, R e MatLab contêm bibliotecas de alto desempenho (como parte do padrão ou externo) para estrutura básica de dados e trabalho algorítmico. C ++ é fornecido com a Biblioteca de modelos padrão, enquanto o Python contém NumPy / SciPy. Tarefas matemáticas comuns são encontradas nessas bibliotecas e raramente é benéfico escrever uma nova implementação.
Uma exceção é se uma arquitetura de hardware altamente personalizada é necessária e um algoritmo está fazendo uso extensivo de extensões proprietárias (como caches personalizados). No entanto, muitas vezes a "reinvenção da roda" desperdiça o tempo que pode ser melhor gasto no desenvolvimento e otimização de outras partes da infra-estrutura de negociação. O tempo de desenvolvimento é extremamente precioso especialmente no contexto dos únicos desenvolvedores.
A latência é muitas vezes uma questão do sistema de execução, pois as ferramentas de pesquisa geralmente estão localizadas na mesma máquina. Para o primeiro, a latência pode ocorrer em vários pontos ao longo do caminho de execução. Os bancos de dados devem ser consultados (latência de disco / rede), os sinais devem ser gerados (sistema operacional, latência de mensagens do kernal), sinais comerciais enviados (latência NIC) e pedidos processados ​​(latência interna dos sistemas de troca).
Para operações de maior freqüência, é necessário familiarizar-se intimamente com a otimização do kernal, além de otimizar a transmissão da rede. Esta é uma área profunda e está significativamente além do escopo do artigo, mas se um algoritmo UHFT é desejado então esteja ciente da profundidade do conhecimento necessário!
O cache é muito útil no conjunto de ferramentas de um desenvolvedor de negócios quantitativo. O armazenamento em cache refere-se ao conceito de armazenar dados freqüentemente acessados ​​de uma maneira que permita um acesso de alto desempenho, em detrimento do potencial estancamento dos dados. Um caso de uso comum ocorre no desenvolvimento da web ao tirar dados de um banco de dados relacional com respaldo de disco e colocá-lo na memória. Quaisquer pedidos subseqüentes para os dados não precisam "acessar o banco de dados" e, portanto, os ganhos de desempenho podem ser significativos.
Para situações de negociação, o cache pode ser extremamente benéfico. Por exemplo, o estado atual de um portfólio de estratégia pode ser armazenado em um cache até ser reequilibrado, de modo que a lista não precisa ser regenerada em cada ciclo do algoritmo de negociação. Essa regeneração provavelmente será uma alta CPU ou operação de E / S de disco.
No entanto, o armazenamento em cache não está sem os seus próprios problemas. A regeneração de dados de cache de uma só vez, devido à natureza volátil do armazenamento de cache, pode colocar uma demanda significativa na infraestrutura. Outra questão é o empilhamento de cães, onde múltiplas gerações de uma nova cópia de cache são realizadas sob uma carga extremamente alta, o que leva a uma falha em cascata.
A alocação de memória dinâmica é uma operação cara na execução de software. Assim, é imperativo que os aplicativos de maior desempenho comercial sejam conscientes de como a memória está sendo alocada e desalocada durante o fluxo do programa. Novos padrões de linguagem, como Java, C # e Python, todos executam a coleta automática de lixo, que se refere à desalocação da memória alocada dinamicamente quando os objetos ficam fora do escopo.
A coleta de lixo é extremamente útil durante o desenvolvimento, pois reduz erros e ajuda a legibilidade. No entanto, muitas vezes é sub óptimo para certas estratégias de negociação de alta freqüência. A coleta de lixo personalizada é muitas vezes desejada para esses casos. Em Java, por exemplo, ao ajustar a configuração do coletor de lixo e do heap, é possível obter alto desempenho para as estratégias de HFT.
C ++ não fornece um coletor de lixo nativo e, portanto, é necessário lidar com toda a alocação / desalocação de memória como parte da implementação de um objeto. Embora potencialmente propenso a erros (potencialmente levando a ponteiros pendurados), é extremamente útil ter um controle fino de como os objetos aparecem no heap para determinadas aplicações. Ao escolher um idioma, certifique-se de estudar como funciona o coletor de lixo e se ele pode ser modificado para otimizar um caso de uso específico.
Muitas operações em sistemas de negociação algorítmica são favoráveis ​​à paralelização. Isso se refere ao conceito de realização de múltiplas operações programáticas ao mesmo tempo, ou seja, em "paralelo". Os algoritmos denominados "embarassingly paralelos" incluem etapas que podem ser computadas totalmente independentemente de outras etapas. Certas operações estatísticas, como as simulações de Monte Carlo, são um bom exemplo de algoritmos embarazosa paralelos, pois cada sorteio aleatório e subsequente operação do caminho podem ser computados sem o conhecimento de outros caminhos.
Outros algoritmos são apenas parcialmente paralelizados. As simulações de dinâmica de fluidos são um exemplo, onde o domínio da computação pode ser subdividido, mas, em última instância, esses domínios devem se comunicar entre si e, portanto, as operações são parcialmente seqüenciais. Os algoritmos paralisáveis ​​estão sujeitos à Lei de Amdahl, que fornece um limite superior teórico para o aumento de desempenho de um algoritmo paralelizado quando sujeito a processos separados em $ N $ (por exemplo, em um núcleo ou fio de CPU).
A paralelização tornou-se cada vez mais importante como um meio de otimização, uma vez que as velocidades do clock do processador estagnaram, já que os processadores mais novos contêm muitos núcleos com os quais realizar cálculos paralelos. O aumento do hardware de gráficos de consumo (predominantemente para videogames) levou ao desenvolvimento de Unidades de processamento gráfico (GPUs), que contém centenas de "núcleos" para operações altamente concorrentes. Tais GPUs são agora muito acessíveis. Os quadros de alto nível, como o CUDA da Nvidia, levaram a uma adoção generalizada na academia e nas finanças.
Esse hardware de GPU geralmente é apenas adequado para o aspecto de pesquisa de financiamento quantitativo, enquanto que outros equipamentos mais especializados (incluindo matrizes de portas programáveis ​​em campo - FPGAs) são usados ​​para (U) HFT. Atualmente, a maioria dos langauges modernos suporta um grau de concorrência / multithreading. Assim, é direto otimizar um backtester, pois todos os cálculos são geralmente independentes dos outros.
O dimensionamento em engenharia e operações de software refere-se à capacidade do sistema de lidar consistentemente com o aumento de cargas sob a forma de solicitações maiores, maior uso do processador e maior alocação de memória. Na negociação algorítmica, uma estratégia pode escalar se pode aceitar quantidades maiores de capital e ainda produzir retornos consistentes. A pilha de tecnologia de negociação escala se pode suportar maiores volumes de comércio e latência aumentada, sem bloqueio de estrangulamento.
Enquanto os sistemas devem ser projetados para dimensionar, muitas vezes é difícil prever de antemão, onde um gargalo irá ocorrer. O registro, o teste, o perfil e o monitoramento rigorosos ajudarão grandemente em permitir que um sistema seja dimensionado. As próprias línguas são muitas vezes descritas como "inesquecíveis". Isso geralmente é o resultado de uma informação errônea, e não de um fato difícil. É a pilha de tecnologia total que deve ser verificada quanto à escalabilidade, e não ao idioma. Claramente, certas línguas têm maior desempenho do que outras em casos de uso específicos, mas um idioma nunca é "melhor" do que outro em todos os sentidos.
Um meio de gerenciar a escala é separar as preocupações, como afirmado acima. A fim de introduzir ainda a capacidade de lidar com "picos" no sistema (ou seja, uma volatilidade súbita que desencadeia uma série de trades), é útil criar uma "arquitetura de filas de mensagens". Isso simplesmente significa colocar um sistema de fila de mensagens entre os componentes para que as ordens sejam "empilhadas" se um determinado componente não conseguir processar muitos pedidos.
Em vez de pedidos de perda, eles simplesmente são mantidos em uma pilha até que a mensagem seja tratada. Isso é particularmente útil para enviar trocas para um mecanismo de execução. Se o motor está sofrendo em latência intensa, ele irá fazer backup de trades. Uma fila entre o gerador de sinal comercial e a API de execução aliviará essa questão à custa de uma possível destruição comercial. Um bem respeitado corretor de fila de mensagens de código aberto é RabbitMQ.
Hardware e sistemas operacionais.
O hardware que executa sua estratégia pode ter um impacto significativo na rentabilidade do seu algoritmo. Esta não é uma questão restrita aos comerciantes de alta freqüência. Uma má escolha em hardware e sistema operacional pode levar a uma falha na máquina ou reiniciar no momento mais inoportuno. Assim, é necessário considerar onde sua candidatura irá residir. A escolha é geralmente entre uma máquina de mesa pessoal, um servidor remoto, um provedor de "nuvem" ou um servidor co-localizado em troca.
As máquinas de mesa são simples de instalar e administrar, especialmente com sistemas operacionais mais novos e amigáveis, como o Windows 7/8, o Mac OSX eo Ubuntu. Os sistemas de desktop possuem algumas desvantagens significativas, no entanto. O principal é que as versões dos sistemas operacionais projetados para máquinas de mesa provavelmente irão requerer reinicialização / remendo (e muitas vezes no pior dos tempos!). Eles também usam mais recursos computacionais pela virtude de exigir uma interface gráfica do usuário (GUI).
Utilizar hardware em um ambiente doméstico (ou escritório local) pode levar à conectividade com a internet e aos problemas de tempo de atividade. O principal benefício de um sistema de desktop é que a potência computacional significativa pode ser comprada pela fração do custo de um servidor dedicado remoto (ou sistema baseado em nuvem) de velocidade comparável.
Um servidor dedicado ou uma máquina baseada em nuvem, muitas vezes mais caro do que uma opção de desktop, permite uma infra-estrutura de redundância mais significativa, como backups automatizados de dados, a capacidade de garantir de forma mais direta o tempo de atividade e monitoramento remoto. Eles são mais difíceis de administrar, pois exigem a capacidade de usar recursos de logon remoto do sistema operacional.
No Windows, isto é geralmente através do GUI Remote Desktop Protocol (RDP). Em sistemas baseados em Unix, a linha de comando Secure SHell (SSH) é usada. A infraestrutura de servidor baseada em Unix é quase sempre baseada em linha de comando, o que imediatamente faz com que as ferramentas de programação baseadas em GUI (como MatLab ou Excel) sejam inutilizáveis.
Um servidor co-localizado, como a frase é usada nos mercados de capitais, é simplesmente um servidor dedicado que se encontra dentro de uma troca para reduzir a latência do algoritmo de negociação. Isso é absolutamente necessário para certas estratégias de negociação de alta freqüência, que dependem de baixa latência para gerar alfa.
O aspecto final para a escolha do hardware e a escolha da linguagem de programação é a independência da plataforma. Existe a necessidade do código para executar vários sistemas operacionais diferentes? O código foi projetado para ser executado em um tipo específico de arquitetura de processador, como o Intel x86 / x64 ou será possível executar em processadores RISC, como os fabricados pela ARM? Essas questões serão altamente dependentes da frequência e do tipo de estratégia implementada.
Resiliência e Testes.
Uma das melhores maneiras de perder muito dinheiro na negociação algorítmica é criar um sistema sem resiliência. Isso se refere à durabilidade do sistema quando sujeito a eventos raros, como falências de corretagem, volatilidade súbita em excesso, tempo de inatividade em toda a região para um provedor de servidor em nuvem ou a exclusão acidental de um banco de dados de negociação inteiro. Anos de lucro podem ser eliminados em segundos com uma arquitetura mal projetada. É absolutamente essencial considerar questões como debugging, testes, logging, backups, alta disponibilidade e monitoramento como componentes principais do seu sistema.
É provável que, em qualquer aplicativo de negociação quantitativo personalizado razoavelmente complicado, pelo menos 50% do tempo de desenvolvimento serão gastos em depuração, teste e manutenção.
Quase todas as linguagens de programação são enviadas com um depurador associado ou possuem alternativas de terceiros bem respeitadas. Em essência, um depurador permite a execução de um programa com inserção de pontos de interrupção arbitrários no caminho do código, que interrompe temporariamente a execução para investigar o estado do sistema. O principal benefício da depuração é que é possível investigar o comportamento do código antes de um ponto de falha conhecido.
A depuração é um componente essencial na caixa de ferramentas para analisar erros de programação. No entanto, eles são mais amplamente utilizados em linguagens compiladas, como C ++ ou Java, pois linguagens interpretadas, como Python, geralmente são mais fáceis de depurar devido a menos declarações LOC e menos verbosas. Apesar desta tendência, o Python é enviado com o pdb, que é uma ferramenta de depuração sofisticada. O Microsoft Visual C ++ IDE possui amplos utilitários de depuração de GUI, enquanto que para o programador de linha de comando Linux C ++, o depurador gdb existe.
O teste no desenvolvimento de software refere-se ao processo de aplicação de parâmetros e resultados conhecidos a funções, métodos e objetos específicos dentro de uma base de código, para simular o comportamento e avaliar múltiplos caminhos de código, ajudando a garantir que um sistema se comporta como deveria. Um paradigma mais recente é conhecido como Test Driven Development (TDD), onde o código de teste é desenvolvido contra uma interface especificada sem implementação. Antes da conclusão da base de código real, todos os testes falharão. À medida que o código é escrito para "preencher os espaços em branco", os testes eventualmente passarão, em que ponto o desenvolvimento deve cessar.
O TDD requer um design de especificação detalhado e abrangente, bem como um grau de disciplina saudável para realizar com sucesso. Em C ++, o Boost fornece uma estrutura de teste de unidade. Em Java, a biblioteca JUnit existe para cumprir a mesma finalidade. O Python também possui o módulo unittest como parte da biblioteca padrão. Muitas outras línguas possuem estruturas de teste de unidade e muitas vezes existem várias opções.
Em um ambiente de produção, o log sofisticado é absolutamente essencial. Logging refere-se ao processo de saída de mensagens, com vários graus de gravidade, em relação ao comportamento de execução de um sistema em um arquivo ou banco de dados plano. Os logs são uma "primeira linha de ataque" ao procurar o comportamento inesperado do tempo de execução do programa. Infelizmente, as falhas de um sistema de registro tendem a ser descobertas apenas após o fato! Tal como acontece com os backups discutidos abaixo, um sistema de registro deve ser devidamente considerado ANTES de projetar um sistema.
Tanto o Microsoft Windows quanto o Linux possuem uma extensa capacidade de registro do sistema e as linguagens de programação tendem a ser enviadas com bibliotecas de registro padrão que cobrem a maioria dos casos de uso. Muitas vezes, é aconselhável centralizar as informações de registro para analisá-lo em uma data posterior, uma vez que muitas vezes pode levar a idéias sobre como melhorar o desempenho ou a redução de erros, o que quase certamente terá um impacto positivo em seus retornos comerciais.
Embora o registro de um sistema forneça informações sobre o que aconteceu no passado, o monitoramento de um aplicativo fornecerá uma visão do que está acontecendo agora. Todos os aspectos do sistema devem ser considerados para o monitoramento. As métricas do nível do sistema, como o uso do disco, a memória disponível, a largura de banda da rede e o uso da CPU fornecem informações básicas de carga.
Métricas de negociação, como preços / volume anormais, levantamentos rápidos bruscos e exposição à conta para diferentes setores / mercados também devem ser monitorados continuamente. Além disso, deve ser instigado um sistema de limiar que forneça notificação quando certas métricas são violadas, elevando o método de notificação (e-mail, SMS, atendimento automatizado), dependendo da gravidade da métrica.
O monitoramento do sistema geralmente é o domínio do administrador do sistema ou do gerente de operações. No entanto, como um único desenvolvedor comercial, essas métricas devem ser estabelecidas como parte do design maior. Existem muitas soluções para monitoramento: proprietárias, hospedadas e de código aberto, que permitem uma ampla personalização de métricas para um caso de uso particular.
Backups and high availability should be prime concerns of a trading system. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected? 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected? The answers to both of these questions are often sobering!
It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment?
Similarly, high availability needs to be "baked in from the start". Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I won't delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system.
Choosing a Language.
Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised.
Type Systems.
When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C++ and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript.
For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesn't catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. 'Dynamic' languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone.
Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPy/SciPy alleviate this issue due to enforcing a type within arrays.
Open Source or Proprietary?
One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. There are advantages and disadvantages to both approaches. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensing/maintenance costs.
The Microsoft stack (including Visual C++, Visual C#) and MathWorks' MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant "battle testing" in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds.
Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C++, C# and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many plugins/libraries (some free, some commercial) for nearly any quantitative research domain.
There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools "play well" with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned.
MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive.
Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQL/PostgreSQL, Python, R, C++ and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats.
The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process.
Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce.
Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C++ in order to improve execution speeds, but it requires some experience in multi-language programming.
While proprietary software is not immune from dependency/versioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer.
I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C++ and R. The maturity, community size, ability to "dig deep" if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C++) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend.
Batteries Included?
The header of this section refers to the "out of the box" capabilities of the language - what libraries does it contain and how good are they? This is where mature languages have an advantage over newer variants. C++, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms.
C++ is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms "for free". Python is known for being able to communicate with nearly any other type of system/protocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance).
Outside of the standard libraries, C++ makes use of the Boost library, which fills in the "missing parts" of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C++11 spec, including native support for lambda expressions and concurrency.
Python has the high performance NumPy/SciPy/Pandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL++ (MySQL/C++), JDBC (Java/MatLab), MySQLdb (MySQL/Python) and psychopg2 (PostgreSQL/Python). Python can even communicate with R via the RPy plugin!
An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C++ and Java, but some also support C# and Python, either directly or with community-provided wrapper code to the C++ APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol.
Conclusão.
As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries.
The benefit of a separated architecture is that it allows languages to be "plugged in" for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it.
Apenas iniciando o comércio quantitativo?
3 razões para se inscrever para a lista de e-mails QuantStart:
1. Quant Trading Lessons.
Você terá acesso instantâneo a um curso de e-mail gratuito de 10 partes, repleto de sugestões e dicas para ajudá-lo a começar a negociação quantitativa!
2. Todo o conteúdo mais recente.
Todas as semanas, vou enviar-lhe um envoltório de todas as atividades no QuantStart para que você nunca mais perca uma postagem novamente.
Real, dicas de negociação viáveis, sem tonturas.

No comments:

Post a Comment